Learning directed acyclic graphs from large-scale genomics data

نویسندگان

  • Fabio Nikolay
  • Marius Pesavento
  • George Kritikos
  • Nassos Typas
چکیده

In this paper, we consider the problem of learning the genetic interaction map, i.e., the topology of a directed acyclic graph (DAG) of genetic interactions from noisy double-knockout (DK) data. Based on a set of well-established biological interaction models, we detect and classify the interactions between genes. We propose a novel linear integer optimization program called the Genetic-Interactions-Detector (GENIE) to identify the complex biological dependencies among genes and to compute the DAG topology that matches the DK measurements best. Furthermore, we extend the GENIE program by incorporating genetic interaction profile (GI-profile) data to further enhance the detection performance. In addition, we propose a sequential scalability technique for large sets of genes under study, in order to provide statistically significant results for real measurement data. Finally, we show via numeric simulations that the GENIE program and the GI-profile data extended GENIE (GI-GENIE) program clearly outperform the conventional techniques and present real data results for our proposed sequential scalability technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Covariance Selection∗

We present a novel structural learning method called HdBCS that performs covariance selection in a Bayesian framework for datasets with tens of thousands of variables. HdBCS is based on the intrinsic connection between graphical models on undirected graphs and graphical models on directed acyclic graphs (Bayesian networks). We show how to produce and explore the corresponding association networ...

متن کامل

Learning Acyclic Directed Mixed Graphs from Observations and Interventions

We introduce a new family of mixed graphical models that consists of graphs with possibly directed, undirected and bidirected edges but without directed cycles. Moreover, there can be up to three edges between any pair of nodes. The new family includes Richardson’s acyclic directed mixed graphs, as well as Andersson-Madigan-Perlman chain graphs. These features imply that no family of mixed grap...

متن کامل

Towards Optimal Learning of Chain Graphs

In this paper, we extend Meek’s conjecture (Meek, 1997) from directed and acyclic graphs to chain graphs, and prove that the extended conjecture is true. Specifically, we prove that if a chain graph H is an independence map of the independence model induced by another chain graph G, then (i) G can be transformed into H by a sequence of directed and undirected edge additions and feasible splits ...

متن کامل

Learning Inclusion-Optimal Chordal Graphs

Chordal graphs can be used to encode dependency models that are representable by both directed acyclic and undirected graphs. This paper discusses a very simple and efficient algorithm to learn the chordal structure of a probabilistic model from data. The algorithm is a greedy hillclimbing search algorithm that uses the inclusion boundary neighborhood over chordal graphs. In the limit of a larg...

متن کامل

Chain Graphs : Interpretations, Expressiveness and Learning Algorithms

Probabilistic graphical models are currently one of the most commonly used architectures for modelling and reasoning with uncertainty. The most widely used subclass of these models is directed acyclic graphs, also known as Bayesian networks, which are used in a wide range of applications both in research and industry. Directed acyclic graphs do, however, have a major limitation, which is that o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017